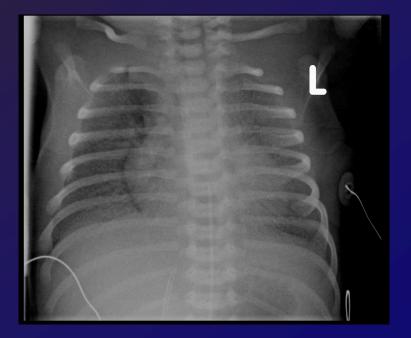
Image gently: Image quality and dose assessment in portable CXR in the NICU and PICU before and after implementation of a high-kVp technique

Idris A. Elbakri^{1,2} PhD, MCCPM and Benjamin Z. Koplewitz MD³

¹Department of Radiology, University of Manitoba, Winnipeg, Canada ²Division of Medical Physics, CancerCare Manitoba, Winnipeg, Canada

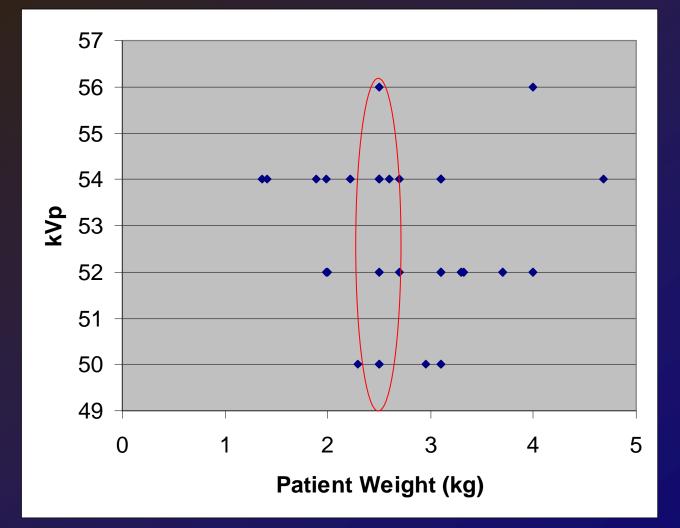
³Dept. of Radiology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel


The authors have no conflict of interest to report

Introduction

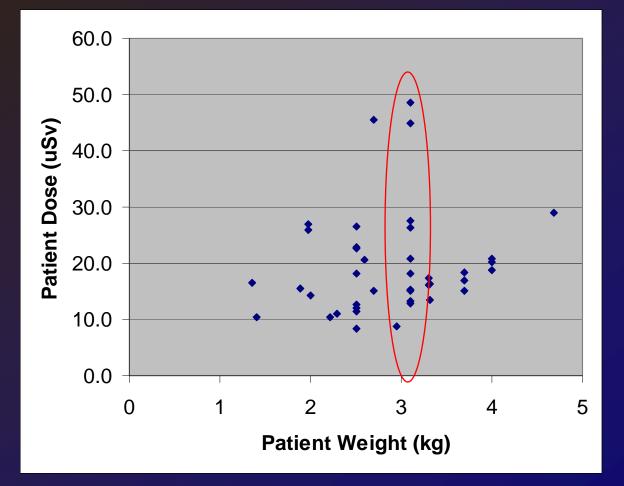
- Neonatal radiography is an essential tool in the care of patients in neonatal intensive care units (NICU).
- AP Chest and AP abdomen radiographs are the most common neonatal radiographs.
- Neonatal imaging is commonly carried out using portable radiography.
- Computed radiography (CR) has largely replaced film-screen cassettes in portable neonatal radiography

Introduction


- While neonatal radiography doses are generally low, the exposed population is at higher risk of stochastic effects of radiation
- Quality control and dose surveys are important for assessment of neonatal radiographic practice.

Introduction and Motivation

- Quality control survey of neonatal radiography revealed the following:
 - No standardized technique chart was being followed
 - kVp/mAs and patient doses varied widely, depending on operator experience and training
 - Protocol parameters were not adjusted after introduction of CR. Low kVp (50-56) appropriate for film-screen cassettes still in use.


Quality Control Survey

No clear relationship between kVp and patient weight

Wide kVp range for a given weight

Quality Control Survey

Wide range of doses for a given weight highlights the lack of technique standardization

Purpose

- Implement weight-based technique parameters
- Reduce patient dose using a high-kVp technique
- Assess image quality
- Verify that image quality is not compromised

Methods

- Data collection (age, weight, gender, kVp, mAs) at pre-existing conditions for two months.
- Introduction of a weight based high-kVp technique chart
 - Tube potentials 60 to 76
 - Tube current fixed at 0.5 mAs
- Data collection at new conditions for two months

Methods

- GE AMX4 portable x-ray system
- Fuji CR imaging plates and reader
- Tracked AP chest and abdomen for patients 0-3 months in the NICU and PICU at Hadassah Medical Organization
- Image quality assessment and dose estimation for high and low kVp image sets

X-ray kVp/mAs for AP Radiographs of Neonates

משקל	kVp	mAs
< 1000 g	60	0.5
1000 g 1500 g	64	0.5
1500 g 2500 g	66	0.5
2500 g 3500 g	68	0.5
3500 g 4500 g	70	0.5
4500 g 5500 g	72	0.5
5500 g 6500 g	- 74	0.5
> 6500 g	76	0.5

Dose Estimation

- Portable GE AMX4 tube output characterized at various kVp settings
- Incident air kerma measured at 100 cm from x-ray tube using calibrated Pirahna solid state dosimeter (RTI Electronics, Mölndal, Sweden)

Dose Estimation

- Effective dose for each images estimated using PCXMC 2.0 Monte Carlo software
- Software inputs:
 - weight, height, beam area, kVp, incident air kerma, filtration, SID

PCXMC Dose Calculation Software

DefForm [R:\idris elbakri\def files high kvp\raza	0713_001.DF2]		<u>×</u>
File Main menu Dew Form Dem Form	🗐 Save Form 📗 S	ave Form As 🛛 📇 P	rint As Text
Monte Carlo data for this definition file have already been genera	ated		
Header text			
Phantom data			
Age: Phantom I		200	
© 0 C 1 C 5 C 10 C 15 C Aduli 44.50		Arms in phantom	
Standard:	50.9 Standard: 3.4	Variation and the second	
Geometry data for the x-ray beam		✓ Draw x-ray field	
FSDBeam widthBeam heightXrefYref87.1611.339.590.00000.0	Zref 0000 15.0000	<u>D</u> ra w	
Projection angle <u>Cranio-caudal</u> ang 270.00 0.00	le	Update Field	
LATR=180 AP=270 (pos) Cranial X-ray tub	e:	Stop	
LATL=0 PA=90 (neg) Caudal X-ray tub			
MonteCarlo simulation parameters	1	Rotat	ion increment + 30 - View angle 270
Max energy (keV) Number of photons			
150 100000			
Field size calculator	⊐ ⊣ ⊽-Skeleton	Pancreas	
FID Image width Image height	Brain	Uterus	i i
110 18 24 Calculate	V Heart	 ✓ Liver ✓ Upper large intestine 	
Phantom exit- image distance: 5.0	Spleen	✓ Lower large intestine ✓ Small intestine	
	Varies	I Thyroid I Henetythister	
FSD Beam width Beam height Use this data	Thymus	C Coll Description	
	Stomach Salivary glands	IV desidence IV Prostate	
	🔽 Oral mucosa	Pharyna/trachea/sinus	
			Quick C Sharp

Image Quality Assessment

- Two fellowship-trained pediatric radiologists blindly assessed images before and after technique change.
- Evaluation criteria based on the CEC image quality standards¹
- Criteria scored on a 4-point scale: (1) criterion definitely not defined, (2) criterion probably not defined, (3) criterion probably defined and (4) criterion definitely defined or (na) not applicable.
- Average score computed for each image

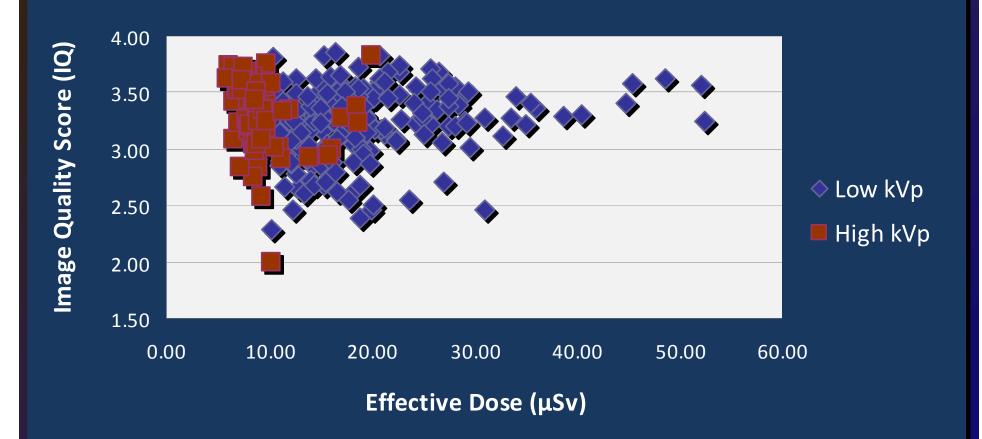
^{1.} European Commission. European guidelines on quality criteria for diagnostic radiographic images in paediatrics. EUR 1626. July 1996.

Image Quality Criteria

- Reproduction of the thorax without rotation and tilting
- Reproduction of the chest must extend from the cervical trachea to T12/L1 (part of the abdomen maybe included for special purposes).
- Reproduction of the vascular pattern in central two-thirds of the lungs
- Reproduction of the trachea
- Reproduction of the proximal bronchi
- Visualization of the mediastinum
- Visibility of the tip of the endotracheal tube
- Visually sharp reproduction of the diaphragm
- Visually sharp reproduction of the costophrenic angles
- Reproduction of the spine
- Visualization of the retrocardiac lung
- Visibility of the tip of the umbilical catheter
- Visibility of the tip of the long line
- Visibility of bowel loops
- Visibility of the nosagastric tube

Statistical Analysis

- We used the 2-tailed t-test to check significance of change in:
 - Patient dose
 - Patient weight
 - Reader 1 score
 - Reader 2 score
- We used ANCOVA analysis to check significance of change in effective dose with xray protocol, patient age and weight.


Results

	Number	Percentage %
Gender (M/F)	163/91	63.9/35.7
Chests	221	86.7
Abdomens	32	12.5
Chest/Abdomen	2	0.8
High KVp	61	24
Low kVp	193	76
Total	254	100%

Results - Averages

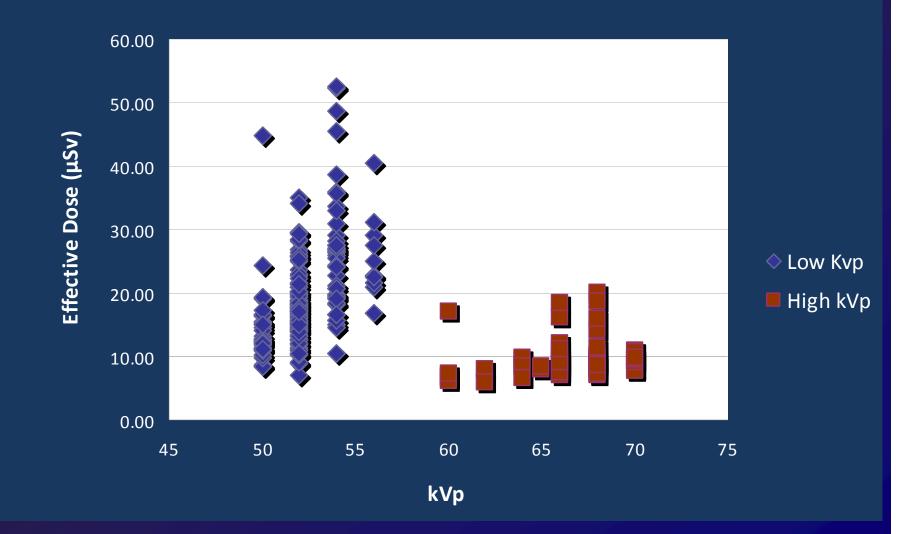
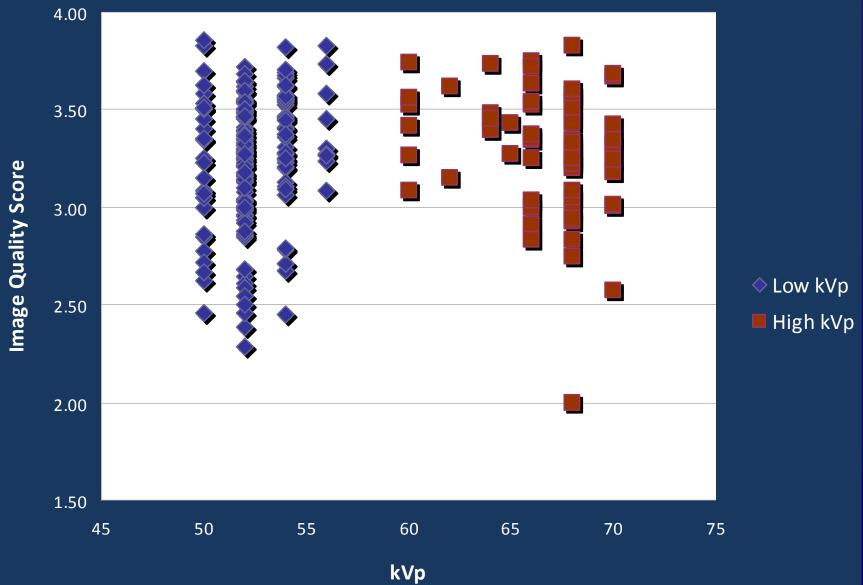
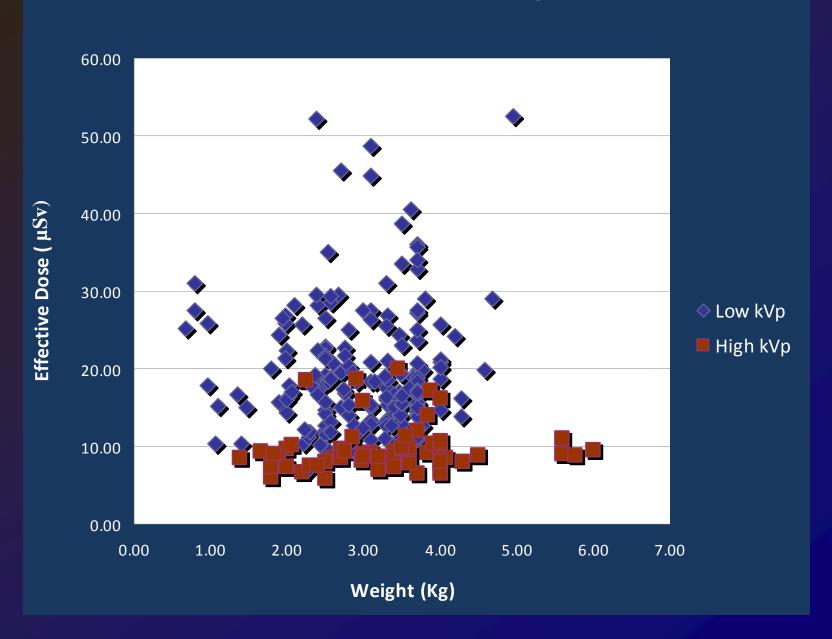

	kVp	mAs	Effective dose (uSv)	Image quality score
Low kVp N=193	52.6	2.6	19.4±8.0	3.26±0.35
High kVp N=61	65.3	0.53	9.6±3.1	\3.35±0.36

Image Quality Score vs Effective Dose


Much narrower dose spread with new technique while maintaining similar IQ scores

Effective Dose (µSv) vs kVp



High-kVp method results in reduced dose and narrower dose range

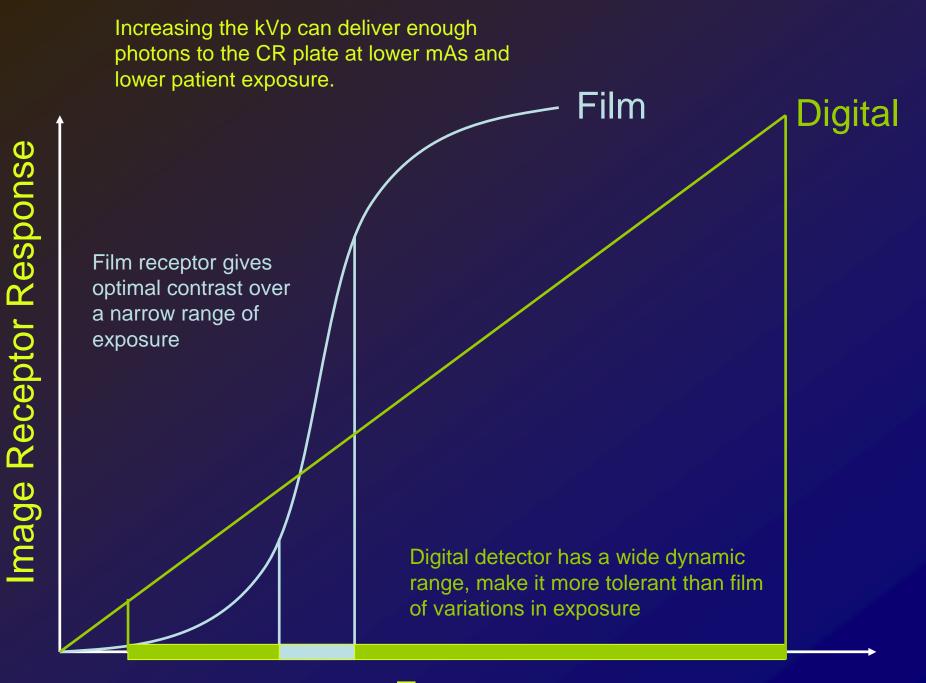
Image Quality vs kVp

Effective Dose vs Weight

Statistical Analysis

- 2-tailed t-test results:
 - Dose change is significant (p<-0.0001)
 - Weight change is insignificant (p=0.072)
 - Reader 1 score change is significant (p=0.04)
 - Reader 2 score change is significant (p<0.001)
- ANCOVA analysis showed that x-ray protocol is the only parameter that effects effective dose significantly (p<0.0001)

Summary of Results


- Clinical image rating is not affected by introducing weight-based higher-kVp technique chart
- Average effective dose reduced by 50%
- Effective dose range reduced from [7.0-52.4] uSv to [5.9 – 19.9] uSv
- The change in protocol parameters is the single most significant factor contributing to dose reduction

Discussion

- Quality control survey revealed that the ALARA principle was not fully applied.
- Lack of standardized technique chart lead to wide variations in patient dose. The same patient could receive doses varying by a factor of 5 for the same examination.
- The dose-saving possibilities of digital imaging were not leveraged.

Discussion – Digital Imaging

- Film imaging is contrast limited. kVp choice depends on:
 - Narrow exposure range required by film
 - Beam penetration (requires higher kVp)
 - Subject contrast (requires lower kVp).
- Digital imaging is *noise* limited.
 - Wide range of useful exposure
 - Image Processing enhances image contrast
 - Enough exposure must reach the detector to avoid a noisy image

Exposure

Discussion

- High-kVp protocol lowered patient dose significantly and reduced dose variations.
- The 'significance' in change in readers image quality scores is due to the narrow range of scores obtained.
- For all practical purposes, image quality not affected by change in kVp.

Conclusions / Lessons Learned

- Periodic quality control results in better patient care.
- "Imaging gently" is a team effort (physicists, radiologists, technologists, administration).
- Technique optimization should be carried out when new imaging modalities and techniques are implemented.

Conclusions / Lessons Learned

- Data is your best friend. We continue to record exposure and patient data for subsequent reviews.
- Data collected in this study will enable us to assess other aspects of quality control, such as positioning and collimation
- High-kV low-mAs technique enables marked dose reduction
- High-kV low-mAs technique dose not impair image quality