

Reducing Radiation Dose in Abdominal CT Studies: ACR Dose Index Registry Data as an Impetus for Quality Improvement

Mark P. Supanich, Ph.D.¹ Nicholas Bevins, Ph.D.² Daniel Myers, MD² ¹Rush University Medical Center - Chicago, IL ²Henry Ford Health System - Detroit, MI Contact: <u>mark_supanich@rush.edu</u>

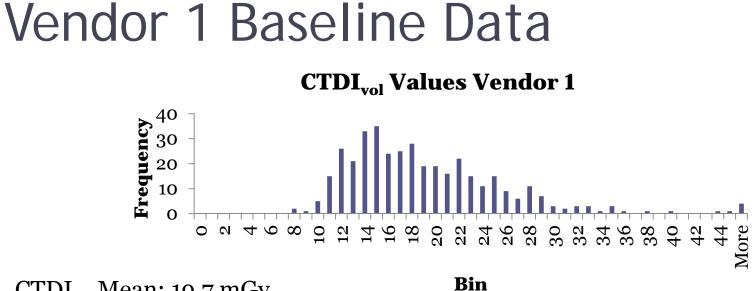
Disclosures

Nothing to disclose

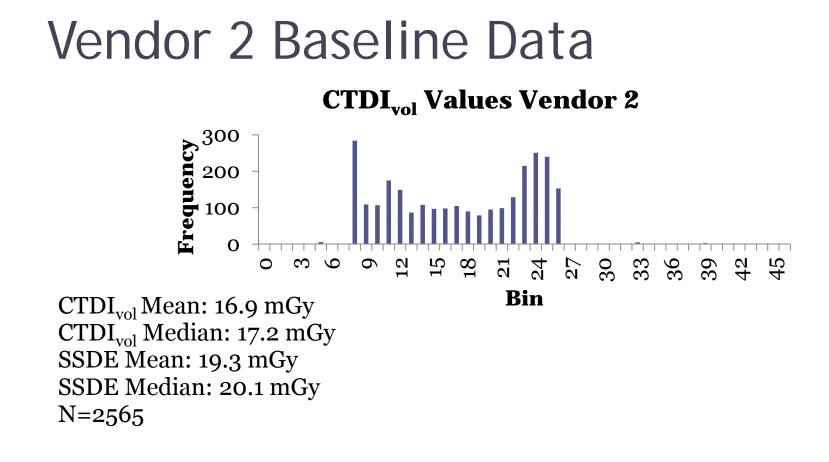
Background

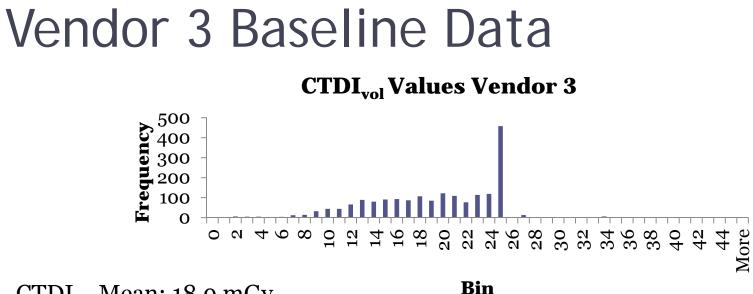
- The Radiology division of the Henry Ford Medical covers imaging for 3 hospitals and a number of outpatient centers
- CT scanners include systems from 3 major vendors (n=13)
- Only data from scanners with the ability to reconstruct 64 slices were included in this study
 - Vendor 1, n=1
 - Vendor 2, n=2
 - Vendor 3, n=5
- No scanners employed iterative reconstruction

Motivation


- Continuous quality improvement is a priority in the Radiology department
- Matching radiation dose and image quality for the same protocol across all scanners was identified as a goal by the radiologists and medical physicists

Tools Used


- eXposureTM software from Bayer Healthcare used to collect dose and protocol information
- Institutional participation in American College of Radiology (ACR) CT Dose Index Registry (DIR)
 - Semi-annual reports of institutional dose metrics broken down by orderable
 - Summary of dose metrics from 300+ participating institutions included


Collection of Baseline Data

- Institutional dose metrics and scan information collected by eXposureTM from 7/2011 through present including
 - CTDI_{vol}
 - SSDE
 - Master Scan Protocol
- Participation in DIR from 1/2012 through present
- Protocols on scanners from same vendor all equivalent
- Image thickness within 0.25 mm on all scanners
- CT Abdomen Pelvis (with or without contrast) exams analyzed
 - Image quality reference parameter on multiphase exams are equal

 $\begin{array}{l} \text{CTDI}_{\text{vol}} \text{Mean: 19.7 mGy} \\ \text{CTDI}_{\text{vol}} \text{Median: 17.3 mGy} \\ \text{SSDE Mean: 21.7 mGy} \\ \text{SSDE Median: 20.4 mGy} \\ \text{N=389} \end{array}$

 $\begin{array}{l} \text{CTDI}_{\text{vol}} \text{Mean: 18.9 mGy} \\ \text{CTDI}_{\text{vol}} \text{Median: 19.5 mGy} \\ \text{SSDE Mean: 21.6 mGy} \\ \text{SSDE Median: 21.9 mGy} \\ \text{N=2160} \end{array}$

Notes on Histograms

- Vendor 2 offered a maximum tube current setting which was utilized resulting in a maximum CTDIvol of ~26 mGy for the standard acquisition
- The output of Vendor 3's systems were tube current limited to outputs of ~25 mGy for standard acquisition technique

Identification of Area for Improvement

- Median CTDI_{vol} for CT Abdomen/Pelvis protocol from all scanners was determined to be above the median value reported by the ACR DIR
- Studies from one vendor (Vendor 3) scanner were identified as the main contributor to the median CTDI_{vol} being higher than ACR DIR median value
 - Highest median CTDI_{vol} of the vendors
 - Scans from Vendor 3 were nearly half of all scans
- Reducing the median CTDI_{vol} of the CT Abdomen/Pelvis studies from Vendor 3 scanners was identified as the area of desired improvement

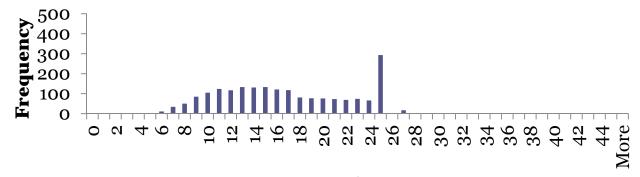
Intervention

- The image quality reference parameter used for the studies was identified (400 mAs/slice)
- The body imaging division head and two medical physicists collaborated on a plan to iteratively reduce the image quality reference parameter
 - On one scanner and one protocol
 - Without informing other radiologists
 - With continuous monitoring of image quality (particularly for patients of different body habitus)

Intervention

- The image quality reference parameter was reduced by 10% to 360 mAs/slice for 1 week
 - The image quality was deemed sufficient and no image quality complaints were registered
- The image quality reference parameter was reduced another 10% to 325 mAs/slice for 1 week
 - The image quality was deemed sufficient and no image quality complaints were registered
- The image quality was reduced to 300 mAs/slice for 1 week
 - The image quality was deemed JUST SUFFICIENT and no further modifications were made
- The new image quality reference parameter of **300** mAs/slice was applied across all Vendor **3** scanners and abdomen/pelvis protocols

Analysis


- Following the intervention data was collected over a 3 month period to compare to the 3 months of data used as the baseline
- The use of the new image quality reference parameter resulted in a statistically significant reduction in radiation dose
- Median value decreased by 3.9 mGy
- Median value across all scanners decreased to below DIR benchmark

Vendor 3 Baseline Data **CTDI**_{vol} Values Vendor 3 500 500 400 300 200 100 0 3032More 34 $\frac{36}{38}$ 40 4 4 CTDI_{vol} Mean: 18.9 mGy Bin CTDI_{vol} Median: 19.5 mGy SSDE Mean: 21.6 mGy SSDE Median: 21.9 mGy

N=2160

Vendor 3 Post Intervention Data

CTDI_{vol} Values Vendor 3

Bin

CTDI_{vol} Mean: 16.3 mGy CTDI_{vol} Median: 15.6 mGy SSDE Mean: 18.2 mGy SSDE Median: 18.2 mGy N=2002

Example Case - same patient pre and post intervention

Dose								A		
# Description	Scan m	As kV	CTDIvol	DLP	Phant	om				
	Mode		[mGy]	[mGy*cm]	Type[o	2m]				
1 SCOUT	Surview	1 120	0.08	4.2	BODY :	32 CI	1	The second s		
1 SCOUT	Surview	1 120	0.88	4.2	BODY :	32 CI	P	STATISTICS OF	-	_
2 PORTAL VENOUS	Helical 2	31 120	14.92	733.7	BODY :	32 CI	1	1 A	100 100	į
3 KIDNEY DELAY	Helical 3	09 120	19.95	539.9	BODY :	32 CI	4		A A	į
								1. Es		Ĩ
							1201210	794	4	Ì
X A]			5	100 50	the second		- 11	-
91.59 HU, 10.8 sd 5.8220 cm ⁻²	A AD									
	Dose									
	# D	escriptio	n So	ran	mAs	kV	CTDIvol	DLP	Phantom	
	STOP !!		Mo	ode			[mGy]	[mGy*cm]	Type[cm]	
and the second	1 3	COUT	Si	ırview	1	120	0.08	4.2	BODY 32 CI	μi.
	1 3	COUT	Si	ırview	l	120	0.08	4.2	BODY 32 CI	М
FOV (mm) 4 (10 cm svp 120 mAR4td 3797	2 1	ORTAL VEN	OUS He	elical	176	J.20	11.40	591.9	BODY 32 CI	ы
Time (ms) 828	6 F	IDNEY DEL	AY He	elical	225	120	14.54	402.6	BODY 32 CI	μ.
Series #5 www.wit36080 Axial Link / Key	<u> </u>									
	. •									

Pre-Intervention

Post Intervention

Notes on experience

- The iterative decrease of the image quality reference parameter was a useful way to adjust image quality and dose in a controlled manner
- Examining the image quality of patients with different body habitus was important
 - The image quality on the thinnest patients was affected more than on the largest
- Radiation dose and image quality were more closely matched between Vendors 2 and 3 after the intervention
- A decrease in the number of cases with a "maxed out" tube current was noted

Conclusion

- Participation in the ACR DIR provides valuable data to institutions
- Semi-annual reports allow departments to perform an "apples to apples" comparison of their dose metrics for exams to those from peer institutions and data aggregated from all participating institutions
- Detailed exam specific data in the reports allows identification of protocols for potential radiation dose reduction

Thank you Questions?

E-mail:mark supanich@rush.edu