

General Hospital

WORLD'S BEST

HOSPITALS

2019 - 2023

statista 🔽

SingHealth

statista 🔽

WORLD'S

BEST SMART

CT SHOULDER: USING PDSA CYCLE IN REDUCING RADIATION DOSE AND MOTION ARTIFACTS A Quality Improvement project Changi

Author Block: M. Chong, X. Lee, B. Choo, N. Anwar, S. Teo, Y. Yan, L. Chong. Radiography Department

Importance of CT in Shoulder Imaging

Detailed Anatomical Visualization

- CT provides high-resolution images that allow for thorough evaluation of complex shoulder anatomy.
- Critical for identifying fractures, tears, and degenerative conditions.

Preoperative Planning

• Enables surgeons to visualize anatomical variations and plan procedures effectively, enhancing surgical outcomes.

Challenges with Current Practices:

1. Use of Helical Scan Mode:

• Motion artifact (particularly due to breathing) is common. This causes the diagnostic value of the images to be reduced.

2. Use of Fixed Tube Current (mA):

• This approach applies a constant radiation dose regardless of patient size or anatomy. This leads to higher radiation doses without a proportional benefit.

Overall Impact:

- The combination of higher radiation doses and motion artifacts raises concerns about patient safety and diagnostic efficacy.
- There is a crucial need to optimize scanning techniques to minimize radiation exposure while ensuring good diagnostic image quality.

Objective

✓ To modify current CT shoulder scanning techniques to be motion artefacts free and lower radiation.

Aims

✓ To reduce the rate of suboptimal images caused by motion artefacts from breathing

✓ To lower the radiation effective dose by 40% to patient while maintaining image quality

Methodology

- A process of 4 Plan-Do-Study-Act(PDSA) cycles were carried out in a radiology department in a tertiary hospital from January 2020 December 2023.
- Measures:
 - Radiation dose indicators: DLP (Dose Length Product) – scan length CTDIvol (CT Dose Index Volume) ED (Effective dose in mSv)
 - Image quality Evaluation:

Qualitative (Subjective) – accessed by 2 radiologists on 5 criteria Quantitative (Objective) – measurements on SNR of bony cortex and marrow

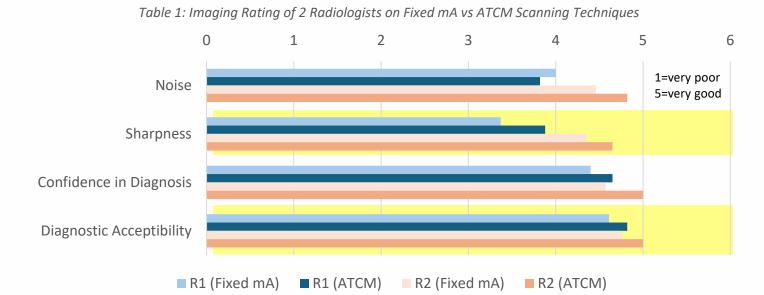
Solution Development: 4 PDSA cycles

- Performed with Helical scan with fixed mA and breathing instructions.
- Motion artefacts reduced however radiation dose remained unchanged.


1st PDSA

2nd PDSA

- Volume Scan Mode with fixed mA was explored.
- With a short scan time of 0.75s, motion artefacts were minimal without breathing instructions.
- Dose reduction target of 40% was not met


- Helical scan mode with Automatic tube current modulation (ATCM) was practised.
- Radiation dose efficiency was improved.
- Motion artefacts were not mitigated

3rd PDSA

- ATCM was combined with volume scan mode.
- Radiation dose was significantly reduced while maintaining image quality.

Results: Qualitative Image Evaluation

- There was no difference between ATCM and fixed mA in presence of artifact, noise and diagnostic acceptability.
- However, there is a difference for sharpness and confidence in diagnosis at SD of 7.5 which is more ideal.

Results: Quantitative Image Evaluation

		Fixed mA		ATC (SD 7.5)		ATC (SD 9)		p-
		mean	SD	mean	SD	mean	SD	value
R1	Glenoid cortex	-1.46	0.14	-1.40	0.12	-1.50	0.11	0.905
	Glenoid marrow	-0.01	0.07	-0.14	0.10	-0.12	0.08	0.212
R2	Glenoid cortex	-1.52	0.17	-1.50	0.19	-1.53	0.16	0.567
	Glenoid marrow	-0.12	0.07	-0.17	0.14	-0.18	0.21	0.865

Table 2: SNR in HU of bony cortex and marrow for different scanning protocols by R1 & R2

• There was also no significant difference in SNR for inter and intra comparison of fixed and modulated mA.

Results: Radiation Dose

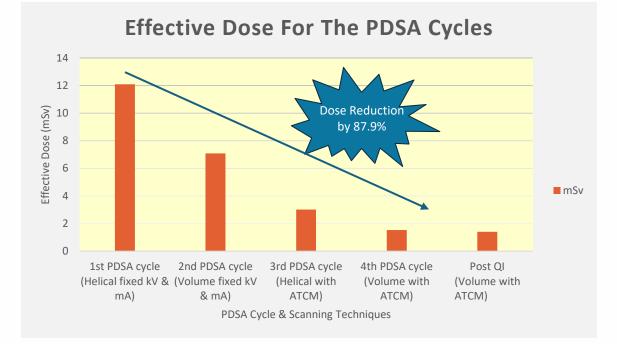


Table 3: Graph Showing the Reduction in Dose

Conclusion

- Volume scan mode with mA modulation has showed to be an effective technique for reducing radiation dose in CT shoulder imaging without compromising the diagnostic quality.
- Higher radiation dose does not necessarily warrant a good quality scan.
- It is important to strike a balance between ALARA principle and preserving diagnostic image quality for an optimized CT protocol.

